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Abstract. The k-nearest neighbors (kNN) algorithm is one of the most popular and simplest lazy learners. However, as the train-
ing dataset becomes larger, the algorithm suffers from the following drawbacks: large storage requirements, slow classification
speed, and high sensitivity to noise. To overcome these drawbacks, we reduce the size of the training data by only selecting
the necessary prototypes before the classification. This study proposes an extended prototype selection technique based on the
geometric median (GM). We compare the proposed method with seven state-of-the-art prototype selection methods and 1NN as
the baseline model. We use 25 datasets from the KEEL and UCI dataset repository website. The proposed method runs at least
3.5 times faster than the baseline model at the cost of slightly reduced accuracy. In addition, the classification accuracy and
kappa value of the proposed method are comparable to those of all the state-of-the-art prototype selection methods considered.
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1. Introduction

The k-nearest neighbors classifier (kNN) is a popular instance-based learning classifier. It is easy to
understand and implement because classifying unseen data is done by distance calculation and counting.
Because kNN is simple and guarantees a low error rate [24], it is widely implemented in data mining
and machine learning research. However, kNN has the following disadvantages when used with a huge
dataset: 1) it requires large memory space for storing all training instances, 2) it is slow to classify due to
its inefficient learning design and 3) it is highly sensitive to noise when the training data contains noises
and outliers [17].

The above weaknesses have been studied and handled using many approaches. Data reduction tech-
niques can help a kNN classifier to overcome these drawbacks by reducing the size of the training set.
Most algorithms need to search an entire dataset for a set of nearest neighbors for each sample. Even
though the nearest neighbors searching process helps such algorithms to create a list of all possible
candidates to be selected, it takes a very long time to finish on a large dataset. Therefore, it is still not
practical to use these algorithms to classify kNN with a large dataset.

To speed up the selection process, the geometric median prototype selection (GMPS) method is a data
reduction method for a kNN classifier that uses the geometric median (GM) as a class prototype [2]. GM
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minimizes the sum of the distances to other instances. The GMPS method provides better performance
than seven other state-of-the-art methods. The GMPS method runs approximately five times faster than
the 1NN classifier model with near equal accuracy. Moreover, one important parameter for the algorithm,
GMPS partition size, has to be assigned manually. The suitable partition size depends on the features of
each dataset, so a human assessor randomly inputs a partition size to test the performance of the GMPS
method. This is an expensive task, especially if this process is repeated until an appropriate partition
size is found. Thus, this is impractical when this method is applied to unseen datasets. This paper aims
to propose another version of the GMPS method that selects a suitable partition size automatically. The
proposed method adds Appropriate partition size assignment (APSA) process that calculates the suitable
partition size for each dataset. The APSA process helps the proposed method adapted for any unseen
datasets.

The paper is organized as follows. The previous prototype selection (PS) methods are reviewed in
Section 2. The new APSA method is proposed in Section 3. The details of the experimental setup are ex-
plained in Section 4. Finally, the empirical results and future work relating to this research are discussed
in Section 5.

2. Related work

Data reduction techniques decrease the complexity of huge datasets in the execution of data mining
algorithms. The reduced datasets still contain the quality of actual knowledge of the original datasets.
For a kNN classifier, data reduction techniques can reduce memory consumption and speed-up the clas-
sification process. Data reduction techniques can be classified into two major groups: prototype gener-
ation and prototype selection, where the prototypes are samples selected from the original dataset by
data reduction techniques. A prototype generation (PG) method generates new artificial prototypes by
summarizing a number of similar instances and replacing the original training set because PG methods
intensively create artificial instances which have different values from the original data [28]. The set of
artificial instances can only be used as a training set for classification, not for other purposes. A pro-
totype selection (PS) method selects a subset of the original training instances into prototypes. The PS
method has efficient real data handling and low memory usage. The PS method is efficiently applied on
many real-world applications. In general, PS methods consume less memory and runs faster than PG
methods. PG methods compute several mathematical or statistical functions to summarize the intrinsic
knowledge for artificial data generation while PS techniques keep representative data from the original
training set by detecting border points or removing noisy instances [18,21]. There are three types of
prototype selection: condensation, edition, and hybrid.

Condensation selection focuses on keeping samples near the decision boundaries. The decision bound-
ary is the region that separates the underlying instances into two sets: one for the concerned class and
another for the rest. A sample that is near the decision boundary is called a border point. Condensation
selection retains border points by removing internal instances that have little effect on the accuracy of
the classifier model. The Condensed Nearest Neighbor (CNN) algorithm is the first well-known conden-
sation method [25]. It focuses on the selection of a consistent subset of the original dataset. The sample
that is correctly classified according to its nearest neighbors is removed and the remaining samples be-
come members of the consistent subset. CNN tries to retain class border samples and remove internal
samples because the misclassified data normally are located close to the decision boundary. The RNN
algorithm [12] extends the concept of CNN by finding a minimally consistent subset. Both of these
methods use the same removal criteria but RNN builds the edited set from the opposite direction by
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starting from a full training set and removing samples that are classified correctly. Furthermore, Fast
Nearest Neighbor Condensation (FCNN), a fast condensation method, selects the centroid of each class
in the training set and continues to insert a representative of the misclassified samples of each Varonoi
cell [10]. The RNN method is the more costly but it provides a slightly smaller subset than CNN method.
The FCNN method is at least twice as fast as the CNN and RNN methods with comparable classification
accuracies and reduction rates. The condensation methods produce small subsets but they are sensitive
to noise.

The edition scheme focuses on removing misclassified samples which is the opposite of the condensa-
tion method. Edited Nearest Neighbor (ENN) [4] was the first edition algorithm that followed the Wilson
Editing rule, according to which, all instances that are incorrectly classified in the same class as their
nearest neighbors are assumed to be noisy samples. ENN initially creates a subset of the same size as
the original training set. ENN iteratively removes samples from the subset that are misclassified in the
original training set. In other words, it attempts to remove samples that are noisy or disagree with their
neighbors. Overall, ENN removes noise very with high level of accuracy but the number of reduced
instances is low. However, there are several edition methods based on modifications of the ENN concept
such as Repeated ENN (RENN) and AII-kNN [14]. The reduction rate of the extended methods is better
than that of ENN but their accuracy is similar or worse.

Hybrid methods are popular because they remove noise better than condensation methods and reduce
the dataset more than edition methods. Also, the classifier models are more accurate than hybrid methods
having condensation and edition methods on their own. Hybrid methods try to remove the internal and
border points using the criteria of the other types. Instance Based Learning (IB3) [7], the first method
in this category, starts by incrementally creating a classification record with a summary of a sampleabLf
classification performance such as the number of correct and incorrect classification attempts. Keep-
ing this classification record facilitates good classification performance with each sample. IB3 removes
noise which has a poor classification record and a detrimental effect on significance testing later on.
Decremental Reduction Optimization Procedure (DROP3) [5] uses a noise-filtering process based on a
rule similar to ENN. Samples in the training set are first classified by the majority vote of their neighbors,
after which the misclassified samples are removed. This helps to remove noisy samples and smooth the
decision boundary. The points far from the decision boundary are also removed using distance sorting
to the nearest enemy. In addition, Iterative Case Filtering (ICF) [13] improves the idea of DROP3 by
building two local sets: coverage and reachability. The coverage set is the set of all samples closer to the
sample x than its closest enemy, defined as the nearest neighbor of a different class. The reachability set
is the set of all samples that have sample x as one of the nearest neighbors. ICF continually removes
samples where the size of the reachability set is greater than the size of the coverage set. This removal
helps to eliminate samples that generalize information from other samples.

Moreover, some hybrid methods utilize graph techniques to present the training set as a network of
nearest neighbors. The Hit Miss Networks (HMN) method [8] proposes a graph-based representation
of a training set that includes a short description of the nearest neighbors connection between pairs of
samples. The graph has a directed edge from each sample to the nearest neighbors of each different class,
with one edge per class. The structure attributes of the HMN graph correspond to attributes of samples
related to the decision boundary of the INN rule such as the border point or central point. There are
two main functions to evaluate how far a sample is located from the decision boundary: hit-degree and
miss-degree. The hit-degree of a node is computed as the number of edges directed to the same class
node. The miss-degree is computed in the opposite way to a hit-degree. HMN-EI, the most effective
version of HMN, deletes samples or nodes which have no incoming edges in the first place. Then, it
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Fig. 1. The process flow of AGMPS algorithm.

iteratively compares and removes samples if the miss-degree value is greater or equal than the hit-degree
value. Moreover, Class Conditional Instance Selection (CCIS) [9] extends the concept of HMN network
graph. Consequently, CCIS provides two graphs: the between-class and the within-class nearest neighbor
graphs. These graphs are used to define a new margin scoring method for sample selection. There are two
phases to this method. First, the Class Conditional selection (CC) process removes the outliers, isolated
points, and points close to the INN decision boundary. Second, the Thin-out selection phase focuses on
selecting a small number of instances without any additional 1NN error.

The data reduction techniques have high computational complexity because they generate artificial
prototypes or collect sets of instances from a large dataset such as border instances and internal instances
[32]. Most PS algorithms in the three selection schemes select each sample by its nearest neighbor’s
classification scores or the margin values of its neighbor’s connection graph. The nearest neighbors
searching process takes a long time to finish on a large dataset. The proposed method aims to improve
the speed of the prototype selection process by selecting only a set of median points in each partition of
the dataset.

3. Adaptive geometric median prototype selection (AGMPS)

This section describes the principle and hypothesis of the Adaptive Geometric Median Prototype
Selection (AGMPS) algorithm for kNN classification. Figure 1 shows the process flow of the AGMPS
algorithm. AGMPS combines Appropriate Partition Size Assignment (APSA) as a suitable measuring
method for the partition size, and geometric median prototype selection (GMPS) as the GM searching
method. The first process calculates a suitable partition size for each dataset and passes it on to the next
process. The second process uses the number of partitions for splitting the dataset and selecting GM
points as class representatives.

The APSA process fits a quartic polynomial function with a list of two dimensional Cartesian coordi-
nates, where the x coordinate is the partition size and the y coordinate is the average distance between
the other samples and each GM in z partitions. A root of derivative polynomial function is chosen as the
number of appropriate partitions. The APSA process helps the proposed method to adapt to any unseen
datasets.

3.1. Geometric median

The GM of sample points in a Euclidean space is the sample point that minimizes the sum of distances
to all other sample points. The GM is a robust measure of central tendency because it is not excessively
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affected by outliers. Formally, for a given set of n points S = {x1, z9, ..., x,} with each x; € R", the
geometric median is defined as Eq. (1).
n

Geometric median = arg min ZHI‘Z -9l (1)
yes 4

Here, the arguments of the minimum (abbreviated arg min or argmin) is the value of argument y at
which sum of the Euclidean distance function is minimized. In this case, y is the GM point minimizing
the sum of Euclidean distance to other points z;. In m dimensional space, the distance function between
point z:; = {21, Ti2, . .., Tim } and y = {y1, Y2, . . ., Ym } in Euclidean space is defined as Eq. (2).

lz: —yll = ()

The idea behind choosing GM is to find a small member of class prototypes for the whole dataset. In
statistics, the median is a generally used measure of the properties of a dataset as it provides a better
idea of a typical value for the data than arithmetic mean because it is not so sensitive to extremely
large or small values. GM is a measure of a typical value that describes the distribution of samples in
multidimensional datasets because it is unaffected by the different scales of the different dimensions.
Consequently, GM has been applied to various fields such as operation research, machine learning, and
information retrieval. In operation research, GM is the optimal solution for a facility location problem
as it finds the placement of facilities that minimizes transportation costs [23]. In machine learning, GM
is used to cluster data because it can be used as a centroid of a given set of instances in a dataset such as
k-median clustering [26]. BIRCH, a hierarchical clustering algorithm for very large datasets, uses GM
as a centroid and merges the data points to their closest centroid to obtain a new set of clusters [34].
In information retrieval, GM [27] is also used as a centroid of a data cluster when selecting unlabeled
training data for a learning-to-rank algorithm. GM summarizes the properties of data values of all close
points. We assume GM is representative of its neighbors.

Furthermore, finding the GM for the facility location problem is an NP-Hard problem which requires
a heuristic solution [6,29,31]. However, finding the GM of the data cluster is not complicated compared
with the facility location problem because we can find the GM in a quadratic time. However, it takes
a long time to complete when working with a large scale dataset. We intend to reduce the running
time of the proposed method using a metaheuristics searching algorithm. Simulated annealing [30] is
chosen as a GM searching algorithm because it has many advantages. First, the cost functions cover
quite arbitrary degrees of nonlinearities, discontinuities, and stochasticity. Second, the process runs on
the searching space of specified conditions and constraints defined as cost functions. Third, SA is easy to
implement with a minimal degree of coding. Finally, SA statistically guarantees that an optimal solution
is found [19].

3.2. Appropriate partition size assignment (APSA)

The idea of the APSA process is to find the number of partitions that ensures that all class samples in
each partition are close enough to the centroid or GM. A higher number of partitions normally tend to
decrease the average distance between the other samples and the GM. Figure 2 shows the relationship
between the average distance between other samples and the GM and accuracy of the classifier model
that is created and evaluated with a different number of partitions on six training sets. The appropriate
partition size is also represented.
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Fig. 2. Relationships among accuracy (dashed line), average distance to GM (solid line), and appropriate partition size (vertical
dashed line) for several partition sizes.

The APSA process identifies the appropriate partition size by finding a root of the derivative of the
average distance of the GM. We utilize a polynomial function to speedily estimate the appropriate num-
ber of partitions and this is then passed on to the next phase. AGMPS generally selects a GM point in
each partition, so the number of partitions is nearly equal to the number of selected samples. A suitable
partition size helps AGMPS to select GMs close to the other samples within the same partition.

For this reason, we estimate the appropriate partition size by sampling some coordinates (x, y) where x
is the partition size, and y is the average distance between the other samples and each GM in z partitions.
The process fits a quartic polynomial function with a list of coordinates as follows:

f(x) =y = az® + b2 + cx® + da' + ea® 3)
where a, b, ¢, d, e are real coefficients, and a # 0.
Because the appropriate partition point is usually located in a low—slo(pe area of the graph, we differ-
x
T

entiate the polynomial function to be a derivative function f’(x) = %). The root of the polynomial
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Algorithm 1 Pseudocode for the APSA phase

1: function APPROPRIATEPARTITIONSIZE(T'S, m)
2 Input: T'S is the original training set, m is the number of points
3 C' < CREATECOORDINATEXY (T'S, m)
4 f(z) « CREATEPOLYNOMIALFUNCTION(C)
500 fl(z) « T2
X
6: Root < FINDROOTOFDERIVATIVEFUNCTION( f/())
7.
8
9
10:

Ming,e; + FINDMINIMUMROOT(Root)
Prum — MinRoat X |TS‘

: return p,,,,

end function

f'(x), a solution of the equation f’(x) = 0, is found by finding a root of the derivative. The root of the
function can be an appropriate partition size because it is on the lowest slope of the graph.

The AppropriatePartitionSize function calculates an appropriate partition size of a dataset. The pseu-
docode of APSA is shown in Algorithm 1. There are two input parameters: 75 is the original training set
and m is the number of points in the polynomial function.

The CreateCoordinateXY function creates a list of (z,y) coordinates m elements. The z; is a parti-
tion size in the list X = {x1 ,..., x,,}. The y; is the average distance between the other samples and
each GM in x; partitions. The pseudocode of CreateCoordinateXY is shown in Algorithm 2. The Re-
duceNumberofPartition function samples n partition points in each partition size x;. We calculate sample
sizes n using the Taro Yamane formula [33]. Each element in X/ is a partition number where SA selects
a GM for the average distance calculation.

The SumofAvgDistanceFromGMs function splits the training data 7S into x; partitions and selects
only samples in each partition of X. The SimulatedAnnealing function is used for the GM searching
process. We calculate average distance of the GM in each partition of a dataset. It returns y; which is the
average distance of the GM for each number of partitions.

Algorithm 2 Pseudocode for creating coordinates (x, y)

1: function CREATECOORDINATEXY (TS, m)
2 Input: 7 is the original training set, m is the number of points
3 X + GETNUMBERSOFPARTITION(TS, m)
4 C <+ ]

5: foreach z; € X do
6:

7

8

X/ <~ REDUCENUMBEROFPARTITION(z;)

n <« | X/
: y; < SUMOFAVGDISTANCEFROMGMS(X/,T'S)
9: C.append((x;,y:))
10: end foreach
11: return C'

12: end function

The CreatePolynomialFunction function creates a set of polynomial coefficients where x is the list of
partition sizes and y is the average distance of the GM. APSA differentiates the polynomial function.
Then, FindRootOfDerivativeFunction function solves the derivative function resulting in a list of roots.
The root of the derivative function is the number of partitions where the reduction rate of average distance
is equal to zero. The derivative function of a quartic polynomial function is a cubic polynomial function
that generally has at most three roots.
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The FindMinimumRoot function assigns each root as variable x to a derivative function and calculates
the average distance iteratively. It compares the average distance of the GM with each of these roots,
then selects a root that effects the change of average distance. It returns Ming,,, which is the root (the
appropriate partition rate) that provides the lowest average distance. The output of this process iS Pyum»
the optimal number of partitions.

After the APSA process is complete, the subsequent process, called geometric median prototype se-
lection (GMPS), accepts Dy.m, the optimal number of partitions, as an input value [2]. There are three
steps to GMS. First, the dataset is separated into p,,, disjoint partitions based on the number of in-
stances in the dataset because GMS focuses only on the selection of class prototypes in each partition
of the dataset. Second, the Simulated Annealing (SA) algorithm selects the GM as a class prototype in
each partition and collects them into a reduced training set. Finally, the selected prototypes are used as a
training set for building a 1NN classifier.

3.3. Complexity analysis

One of the main contributions of this study is to show that AGMPS, a new method for prototype selec-
tion, scales up for large datasets. The low complexity of the algorithm is the most important characteristic
when assessing scalability. There are two processes to AGMPS where we analyze the complexity: APSA
and GMPS.

The complexity of APSA is linear O(NN). It comes from the calculation of the average distance from
GM to other coordinates which has a complexity of O(mtN') where ¢ is the number of iterations required
by SA, m is the number of coordinates in the polynomial function, and N is the number of samples in
the dataset. Because m and t are constant, the complexity of APSA is linear.

The complexity of the GM prototype selection (GMPS) is also O(NV). The optimal number of parti-
tions pu,, come from APSA. The complexity of the GM selection process in each partition is O(tn;)
forallt € {1,2, ..., pnum}, and t > 0 where n; is the number of samples in partition ¢. The complexity
of this process is O(ty) where N is the number of samples in the dataset. The complexity of GMPS
is linear because ppym, and t are constant. Therefore, the total complexity of AGMPS is linear O(N)
+ O(N). We also compare the running time of AGMPS with those of other PS methods and the INN
baseline model in Section 5.3.

3.4. Noise and missing values

Noise is data providing meaningless information which commonly occurs in the data collection or
data preparation processes. Noise affects the features or classes of the training samples making it more
difficult to build high-performance classifiers. There are two types of noise that affect the quality of a
classification dataset: class noise and attribute noise. Class noise occurs when a sample is incorrectly
labeled. Class noise can be caused by human error during the labeling or data entry process. Otherwise,
attribute noise relates to worsening in the values of one or more attributes such as erroneous attribute
values and missing attribute values. Erroneous attribute values refer to having the wrong value for one
or more attributes. The missing values occur when no data value is stored for one or more attributes
of training data. Attribute noise is caused by improper data collection or human error in the data entry
process. Attribute noise is more damaging than class noise in the classifier performance [3,35] so we
focus on testing the noise tolerance capability of the AGMPS method on datasets with only attribute
noise.
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Table 1
State-of-the-art PS methods considered in this study
Publication year PS method Selection scheme  Complexity
2010 Class Conditional Instance Selection (CCIS) Hybrid O(N?)
2008 Hit-Miss Network Iterative Editing (HMN-EI) ~ Hybrid O(N?)
2007 Fast Condensed Nearest Neighbor (FCNN) Condensation O(N?)
2002 Iterative Case Filtering (ICF) Hybrid O(N?)
1991 Instance Base 3 (IB3) Hybrid O(NA)
1972 Edited Nearest Neighbor (ENN) Edition O(N 2)
1968 Condensed Nearest Neighbor (CNN) Condensation O(N®)
Table 2
Parameter settings for state-of-the-art PS methods and AGMPS

PS method Parameters

CNN Number of neighbors = 3, Euclidean distance

FCNN Number of neighbors = 3, Euclidean distance

ENN Number of neighbors = 3, Euclidean distance

1B3 Confidence level of acceptance = 0.9, Euclidean distance, Confidence level of dropping = 0.7

ICF Number of neighbors = 3, Euclidean distance

HMN-EI Epsilon = 0.1, Euclidean distance

CCIS Euclidean distance

AGMPS Number of points = 10 , Minimum temperature = 0, Maximum temperature = 1,000

Random noise, a random value between the minimum and maximum of the domain of an attribute, is
often responsible for a large amount of the attribute noise in data. The edition and hybrid methods aim
to keep the generalization of the training set, and consequently remove noise from the training set by
removing misclassified samples. The AGMPS method does not have a noise removal process so it selects
some noises which are mixed in well with normal data in the same class. However, the AGMPS method
can extensively select a class representative in each partition on the training set. Thus, the AGMPS
method has better kappa values than the edition or hybrid methods in multi-class classifications. We
compare the accuracy and kappa values of the AGMPS method with those of two edition methods (ENN
and All-kNN) and the 1NN baseline model on six datasets with attribute noise in Section 5.5.

The missing values are normally replaced by average, median or mode (the most frequency of occur-
ring attribute value) values of that attribute because the replaced value could not lead to more meaningful
accuracy in the Euclidean distance. The median selection of the AGMPS method is effective when han-
dling a missing value that was replaced by the average, median or mode value because the Euclidean
distance to other points should be insignificantly different from the regular attribute values.

4. Experimental materials and methods

The details of our experimental evaluation is organized as follows. Section 4.1 shows the list of bench-
marking PS methods and the datasets used in the experiment. The definitions of various performance
measures used in the evaluation of the AGMPS model with different datasets are explained in Sec-
tion 4.2. Finally, Section 4.3 details the hardware and software used in this experiment.

4.1. Benchmarking PS methods and datasets

We evaluate the performance of AGMPS with seven Prototype Selection (PS) algorithms listed in
Table 1. All three PS schemes are used in our experiment. The complexities of the PS methods are
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Table 3
Description of dataset

Number of  Number of attributes ~ Number of

Dataset samples (real/integer/nominal) classes
Phoneme 5,404 5 (5/0/0) 2
Pageblocks 5,472 10 (4/6/0) 5
Texture 5,500 40 (40/0/0) 11
Mushroom 5,644 22 (0/0/22) 2
Satimage 6,435 36 (0/36/0) 7
Thyroid 7,200 21 (6/15/0) 3
Twonorm 7,400 20 (20/0/0) 2
Ring 7,400 20 (20/0/0) 2
c0il2000 9,822 85 (0/85/0) 2
Penbased 10,992 16 (0/16/0) 10
Nursery 12,690 8 (0/0/8) 5
Magic 19,020 10 (10/0/0) 2
Letter 20,000 16 (0/16/0) 26
Occupancy 20,560 5 (5/0/0) 2
kr-vs-k 28,056 6 (0/0/6) 17
CreditCard 30,000 23 (19/1/3) 2
Bank Marketing 45211 16 (0/7/9) 2
Adult 45,222 14 (6/0/8) 2
Shuttle 58,000 9 (0/9/0) 7
Fars 100,968 29 (5/0/24) 8
Census 145,521 41 (1/12/28) 3
Skin Segmentation 245,057 3 (0/3/0) 2
KDD Cup (10 percent) 494,020 41 (26/0/15) 23
Covertype 581,012 54 (0/54/0) 7
Poker 1,025,01 10 (0/10/0) 10

shown in Table 1 where N is the set of samples from a training set and A is the set of attributes used
to describe the samples. The 1NN baseline model is included in our experiment. Otherwise, we use the
parameter settings recommended by the author of each algorithm as shown in Table 2 [16].

In this experimental study, we use 25 datasets that have not any noise and missing values from the
UCI data repository [20] and KEEL data repository [15] as shown in Table 3. Each PS method is tested
using a 10-fold cross-validation. Each PS algorithm is run using training samples to create a reduced
training set.

For the noise tolerance test, we use five datasets with uniform attribute noise from the KEEL data
repository. Each PS method is tested using a five-fold cross validation. We use the datasets following
three different schemes based on where the noise is present: Noisy Train-Noisy Test, Noisy Train-Clean
Test, and Clean Train-Noisy Test. In each noise scheme, we test four different noise levels: 5%, 10%,
15%, and 20%. The description of these datasets with attribute noise is shown in Table 4. We compare
the accuracy and kappa values of AGMPS with those of two edition methods (ENN and All-kNN) and
the 1NN baseline model.

4.2. Performance measures

We use several performance measures to compare the performance of AGMPS with other PS methods.
A main goal of PS methods is to reduce storage requirements. Therefore, the reduction rate value is
evaluated. The reduction rate shows the percentage of the size of the reduced training set in relation
to the original training set size. However, the PS methods usually achieve high reduction rates while
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Table 4
Description of dataset with attribute noise

Number of  Number of attributes ~ Number of

Dataset samples (real/integer/nominal) classes
Pageblocks 5,472 10 (4/6/0) 5
Satimage 6,435 36 (0/36/0) 7
Thyroid 7,200 21 (6/15/0) 3
Twonorm 7,400 20 (20/0/0) 2
Ring 7,400 20 (20/0/0) 2
Penbased 10,992 16 (0/16/0) 10

they have moderate or low learning performance. This phenomenon is called the trade-off reduction-
accuracy rate. We use the accuracy and kappa as learning performance indicators. Furthermore, Barlett’s
test and the Wilcoxon Rank Sum test are used to test for significant differences in the accuracy and
kappa measurements between AGMPS and other PS methods. In addition, some PS methods which have
a high-reduction rate while keeping high accuracy are slow methods because they require an advanced
mechanism in the selection process. If the selection process of the PS method takes a very long time, it
is impractical for large datasets. The running time and speedup which show how speedily the PS method
can finish classification are measured in this experiment. We describe all mentioned evaluation metrics
as follows:

1. Reduction rate: represents the reduction of storage capacity obtained by the PS method:

sz.ze( RS) @

size(TR)
where size(RS) is the number of instances in the reduced training set and size(TR) is the number of
instances in the original training set. This measure is in the range O to 1. A larger value indicates that
the method can reduce the training set better, requires less memory, and shortens the classification
time.

2. Accuracy: The number of correctly classified instances is related to the total number of classified
instances and is the most common performance indicator of classification algorithms. This measure
is in the range 0 to 100.

3. Cohen’s Kappa: Cohen’s Kappa value of classifiers is also measured in this experiment to avoid
an accuracy paradox of the states of the classifiers. The accuracy paradox is that classifier models
with a given level of accuracy may have a greater classification power than models with higher
accuracy. Cohen’s Kappa evaluates the proportion of successful hits that can be attributed to a
classifier itself relative to multi-class classifications by compensating for random hits. It is adopted
and considered as a standard measure in the same way as the ROC curve indicates the level of
accuracy of a classifier when evaluating binary classification [1]. It is easy to compute because it
is measured from a confusion matrix that results from a classification This measure is in the range
—1 (total disagreement) through O (random classification) to 1 (perfect agreement). All random
classifiers operate according to the class distribution score zero kappa. A reasonable classifier,
which does at least as well as random classifiers, scores a kappa value higher than zero. A larger
kappa value indicates a higher degree of agreement between the predicted label by classifier and the
actual label of instances. Cohen’s Kappa is computed from the values in the confusion matrix [28]:

N3 i @i — i (Tie X T4) (5)

NZ =3 i @iy X 244)
where r is the number of rows or columns in the confusion matrix, x;; is an entry (i,4) in the

confusion matrix, x;4 and x; are the marginal totals of row ¢ and column ¢, respectively, and N

is the number of samples in the confusion matrix.

Reduction rate = 1 —

Kappa =
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Fig. 3. Accuracy distribution of INN, AGMPS, and other PS methods.

4. Speeding up the algorithm: The speedup calculation estimates the relation between the running
time of PS methods and the 1NN classifier. The running time of the PS method is the total time
spent on selecting prototypes, creating a classification model, and classifying the test data. A
speedup value greater than 1.0 for a PS method indicates that the PS method completes processing
faster than 1NN.

5. Barlett’s test: the Barlett’s test [22] is a statistical method to test the equality of variances. This
test only assumes that there are two samples and that they are quantitative. We perform this test
before the Wilcoxon Rank Sum test because the Wilcoxon Rank Sum test assumes that both tested
samples are independent and that they have equal variance.

6. Wilcoxon Rank Sum test: the Wilcoxon Rank Sum test [11] is a non-parametric test for two inde-
pendent samples often used instead of the ¢-test. We use it for statistical comparison of the accuracy
and kappa measurement between AGMPS and other PS methods.

4.3. Hardware and software support

The experiment was conducted on a personal computer with an Intel core 15-4440 running at 3.10 GHz
with 24 GB RAM and a 240 GB SSD operating Ubuntu version 14.04. The KEEL software tool version
2.0 provides seven of the considered PS methods as well as learning performance and running time
evaluation. The AGMPS algorithm is implemented in Python version 2.7. The relevant libraries include
numpy, scipy, and pandas from the Anaconda package.

5. Results
5.1. Classification performance

Table 5 shows the classification accuracy and standard error of the AGMPS model, the 1NN baseline
model, and all the other PS methods. The ENN method has the best accuracy rate on nine out of 25
datasets. However, the size of the reduced training sets of ENN is very large compared with that of
the other methods. The HMNEI and AGMPS methods provide the best accuracy rate on seven and five
datasets, respectively, and yet HMNEI is ranked the second largest in size of the reduced training set.
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Table 5
Accuracy (%) and standard error of INN, AGMPS, and other PS methods

Dataset INN AGMPS CNN FCNN ENN 1B3 ICF HMNEI CCIS
Phoneme 90.66 85.03 87.14 8732 8799 85.18 76.22 88.64 80.64
Pageblocks 95.78 92.79 95.12 95,60 95.69 9470 5524 95.54 86.41
Texture 99.05 94.80 9742 9758 9844 9720 85.07 98.20 90.78
Mushroom 99.99 99.45 53.59 57.85 48.05 48.66 47.96 47.95 61.80
Satimage 91.08 88.76 89.51 90.04 90.76 87.77 74.64 90.83 90.78
Thyroid 92.65 91.61 91.76  92.82 9399 9342 83.82 90.76 72.50
Twonorm 94.70 94.41 9343 9326 96.85 90.20 90.11 96.66 96.35
Ring 75.03 72.30 87.34 8650 59.24 8343 70.11 80.28 77.13
coil2000 90.19 88.35 88.19 89.35 9392 9358 9332 87.51 93.91
Penbased 99.37 96.76 98.61 98.79 99.29 97.15 89.40 99.12 93.20
Nursery 82.67 84.16 3379 34.09 3379 3529 36.06 36.17 23.17
Magic 80.59 81.27 79.12  80.21 79.12 7521 7498 82.93 81.74
Letter 95.93 92.63 91.89 9275 91.89 9152 8l1.13 93.86 92.45
Occupancy 99.38 99.20 97.89 99.27 99.29 9891 9245 99.31 89.76
kr-vs-k 43.87 50.43 59.26  58.68 50.59 5227 45.80 47.51 43.16
CreditCard 72.95 72.31 73.66 7443  80.43 6720 78.00 75.82 80.16
Bank Marketing 87.09 86.25 6792 67.13 6792 63.00 83.10 67.93 76.04
Adult 79.00 78.45 69.74 7149 69.74 6337 73.84 66.83 74.75
Shuttle 99.93 99.54 99.89 9990 99.89 99.95 71.44 99.89 79.97
Fars 70.76 68.42 38.68 41.48 38.68 20.51 48.00 45.14 37.33
Skin Segmentation  99.95 99.93 99.88 9994 99.88 99.87 26.63 99.95 79.25
Census 92.53 91.22 87.75 88.19 87.75 93.80 93.26 89.20 93.26
KDD Cup 99.93 99.88 60.78 99.84 99.92 80.31 84.48 99.92 83.52
Covertype 94.47 91.25 9276 93.05 9343 91.13 69.09 93.25 79.70
Poker 50.25 48.78 50.69 4447 5381 41.67 62.12 54.86 57.72
Average 87.11 85.75 7943 8136 8041 77.81 7145 81.12 76.62
Std. error 0.030 0.028 0.039 0.039 0.042 0.045 0.037 0.040 0.037

Even where the average accuracy rate of AGMPS is approximately 1.5% lower than that of the 1NN
baseline model, the AGMPS method has a better average accuracy and standard error than all the other
PS methods.

In Fig. 3, the box plots represent the distribution of the accuracies for all PS methods as well as
the INN baseline model based on five statistics: minimum, first quartile, median, third quartile, and
maximum. Because of the comparatively small size of the box, the AGMPS method is more consistent
in accuracy than the other PS methods. Moreover, the mean value (black dot) of the AGMPS method is
higher than those of all the other PS methods.

Table 6 shows values for Cohen’s Kappa and the standard error of the AGMPS model, the INN
baseline model, and all the other PS methods and indicates that HMNEI has the best kappa value on
nine out of 25 datasets. The AGMPS method has the best kappa value on seven datasets. The AGMPS
method has a better average kappa value than all the other PS methods. However, the average kappa
value of the 1NN baseline model is about 0.03 higher than that of the AGMPS method. Moreover, the
AGMPS method has a better kappa value than all the other PS methods as shown in Fig. 4, where the
smaller size of the box indicates that AGMPS is more consistent than all the other PS methods.

5.2. Trade-off between accuracy and reduction rate

As the AGMPS method achieves the highest accuracy rate and kappa value, we also compare the
reduction rate and running time of AGMPS with those of other PS methods. Table 7 shows the reduction
rate and the standard error sorted in descending order. The CCIS method has the highest reduction rate
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Table 6
Kappa and standard error of INN, AGMPS, and other PS methods

Dataset INN AGMPS CNN FCNN ENN IB3 ICF HMNEI CCIS
Phoneme 0.770 0.646 0.687 0.690 0.704 0.643 0.436 0.730  0.515
Pageblocks 0.769 0.652 0.731 0.754 0.746 0.719 0.105 0.755 0.522
Texture 0.990 0.943 0972 0973 0983 0.969 0.836 0980  0.899
Mushroom 1.000 0.989 0.185 0.225 0.114 0.114 0.114 0.112 0.000
Satimage 0.890 0.861 0.871 0.877 0.886 0.850 0.691 0.887 0.899
Thyroid 0.419 0.311 0.379 0422 0351 0355 0.140 0.381 0.176
Twonorm 0.894 0.888 0.869 0.865 0.937 0.804 0.802 0.967 0.927
Ring 0.498 0.443 0.746  0.729 0.178 0.668 0.399 0.604 0.541
c0il2000 0.073 0.080 0.064 0.079 0.189 0.011 0.037 0.105 0.024
Penbased 0.993 0.964 0985 0987 0992 0.968 0.882 0990  0.924
Nursery 0.747 0.768 0.093 0.094 0.093 0.102 0.113 0.104 0.050
Magic 0.564 0.582 0.536  0.558 0.620 0.460 0.395 0.621 0.576
Letter 0.957 0.923 0916 0925 0943 0912 0.804 0.936 0.921
Occupancy 0.983 0.978 0968 0980 0980 0.969 0.789 0.981 0.689
kr-vs-k 0.377 0.447 0.555 0549 0466 0473 0415 0418 0.378
CreditCard 0.217 0.211 0.233 0240 0.328 0.167 0.283 0.304 0.321
Bank Marketing 0.323 0.281 0.081 0.087 0.227 0.065 0.212 0.120  0.133
Adult 0.432 0.438 0.012  0.030 0.015 0.006 0.039 0.013 0.048
Shuttle 0.998 0.986 0997 0997 0.997 0.998 0.423 0.997 0.592
Fars 0.606 0.576 0.128 0.102  0.209 0.027 0.209 0.231 0.196
Skin Segmentation  0.999 0.998 0996 0998 0.996 0996 0.030  0.998 0.000
Census 0.348 0.312 0.089 0.082 0.014 0.002 0.022 0.112 0.032
KDD Cup 0.999 0.998 0467 0997 0.999 0.703 0.750  0.999 0.735
Covertype 0911 0.860 0.884 0.889 0.894 0.858 0.520  0.892 0.690
Poker 0.124 0.101 0.093 0.022 0.128 0.007 0.308 0.157 0.290
Average 0.675 0.646 0.542 0564 0.560 0.514 0.390  0.576 0.443
Std. error 0.062 0.063 0.074 0.077 0.076 0.078 0.059 0.075 0.067
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(95.39%) because it includes two sample removal processes: one for noise and another for samples
ineffective for INN performance. The ICF has the second highest value because it removes samples
that generalize information from other samples. The FCNN and CNN methods have the third and fourth
highest values because they are condensation methods that keep only a small number of samples near
the decision boundary. Although the AGMPS method has a relatively low reduction rate (71.21%), it can
handle the trade-off between accuracy rate, kappa and reduction rate reasonably well as shown in Figs 5

and 6.
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Fig. 4. Kappa distribution of 1NN, AGMPS, and other PS methods.
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Table 7
Average reduction rate (%) and standard error of PS methods
PS Methods CCIS ICF FCNN CNN 1B3 AGMPS HMNEI ENN

Reduction rate  95.39 83.55 76.08 76.25 78.99 71.21 60.05 18.27
Standard error  0.0168  0.0285  0.0405 0.0375 0.0426  0.0209 0.0372  0.0476
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Fig. 5. Graphic comparison of accuracy and reduction rate on the six largest datasets.

Figure 5 compares graphically the accuracy and reduction rates of AGMPS and all the PS methods
considered using six large datasets: Fars, Census, Skin, KDDCup, Covtype, and Poker. The results show
how effectively PS methods can handle large amounts of data. The reduction rate of the AGMPS method
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Fig. 6. Graphic comparison of kappa and reduction rate on the six largest datasets.

is slightly lower than those of the top algorithm on these datasets (except for the Poker dataset) with an
80% average reduction rate.

Figure 6 compares graphically the kappa value and reduction rate of AGMPS and all the considered
PS methods considered using the six large datasets. The AGMPS method has better performance than
all the other PS methods for the Fars and Census datasets. On Skin, KDDcup, and Covtype datasets,
AGMPS is only slightly lower than the top right corner of ideal performance.

5.3. Speeding up the algorithm

The running time of the AGMPS model, the 1NN baseline model, and all considered PS methods are
shown in Table 8 for the the six largest datasets because for the the smaller datasets the running times
for all models were similar and the AGMPS method is the fastest.
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Table 8
Running time (minutes) and speedup (times) of all methods

Dataset INN AGMPS CNN FCNN ENN IB3 ICF HMNEI CCIS

Fars 22 14 3632 22 27 1.35 92 40 59
Skin 27 19 3 0.23 36 0.05 107 14 81
Census 72 43 1718 109 272 267 1319 147 58
KDD Cup 404 76 1864 3 479  0.75 2331 504 1044
Covertype 734 108 5934 804 881 219 2461 1293 1821
Poker 845 295 23069 2915 1421 1829 12995 7357 2709

Average 88.4 24.6 1452.0 1544 1252 928 7743 374.7 231.6
Std. error  45.7 12.4 9437 1194 672 736 5278 295.9 131.8

Speedup 1.0 3.59 0.06 0.57 0.71 0.99 0.11 0.24 0.38
Table 9
Results of Barlett’s test for accuracy and kappa variance equality
Paired methods Accuracy Kappa
p-value Result p-value Result

AGMPS vs. CNN 0.1287  Accept Hy  0.4082  Accept Ho
AGMPS vs. FCNN 0.1229  Accept Ho  0.3221  Accept Ho

AGMPS vs. ENN 0.0641  Accept Hy 0.3325  Accept Ho
AGMPS vs. IB3 0.0311 Reject Hy  0.2927  Accept Ho
AGMPS vs. ICF 0.2255  Accept Hy 0.7651  Accept Ho

AGMPS vs. HMNEI  0.1087  Accept Hp  0.3690  Accept Hp
AGMPS vs. CCIS 0.2113  Accept Hy  0.7364  Accept Ho

Furthermore, based on a comparison of the running times of all the PS methods considered with that
of the 1NN classifier in terms of speedup, Table 8 also shows that the AGMPS method is approximately
3.59 times faster than the baseline model.

5.4. Wilcoxon Rank Sum test

We measure the classification accuracy before conducting significance tests on the result of AGMPS
and other PS methods. Due to the assumptions of the Wilcoxon Rank Sum test, we run Barlett’s test
that tests the null hypothesis that all input samples are from populations with equal variances. Table 9
shows that the classification accuracy variance of AGMPS is not significantly different from the other
PS methods, excluding IB3. Thus we cannot use the Wilcoxon Rank Sum test to compare AGMPS and
IB3.

We run the Wilcoxon Rank Sum test for the classification accuracy and kappa measurement, compar-
ing the results of the AGMPS method with those of all considered PS methods at a 0.05 significance
level. There are two hypotheses in these tests. The null hypothesis is Hy: “The accuracy rate of the
AGMPS method is equal to the accuracy rate of the paired algorithm”. The alternative hypothesis is
Hy: “The accuracy rate of AGMPS method is not equal to the accuracy rate of the paired algorithm”.
The results in Table 10 indicate that the differences between AGMPS and the four PS methods (CNN,
FCNN, ENN, and HMNEI) are not significant and therefore, we can accept Hy (“The accuracy rate of
the AGMPS method is equal to the accuracy rate of the paired algorithm”).

However, the difference between AGMPS and the other two methods (ICF and CCIS) is statistically
significant. When we test a one-sided Wilcoxon Rank Sum test that has Hy: “The accuracy rate of
AGMPS is equal to the accuracy rate of the paired algorithm” and H;: “The accuracy rate of AGMPS
is greater than the accuracy rate of the paired algorithm”. Table 10 shows the results of the one-sided
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Table 10
Results of the Wilcoxon Rank Sum test for accuracy comparison
Paired methods RT™ R~ Equality Difference
p-value Result p-value Result
AGMPS vs. CNN 188 137 0.5077  Accept Hy - -

AGMPS vs. FCNN 165 160 0.7292  Accept Ho - —
AGMPS vs. ENN 167 158 0.7196  Accept Ho - -
AGMPS vs. HMNEI 155 170 0.8532  Accept Hy — —
AGMPS vs. ICF 293 32 0.0011 Reject Hy  0.0008  Reject Ho
AGMPS vs. CCIS 261 64  0.0067 Reject Hoy 0.0033  Reject Hy

Table 11
Results of the Wilcoxon Rank Sum test for kappa comparisons
Paired methods Rt R~ Equality Difference
p-value Result p-value Result

AGMPS vs. CNN 1915 1335 04432  Accept Ho - -
AGMPS vs. FCNN 160.5 1395 0.7751  Accept Ho - -
AGMPS vs. ENN 1525 1725 0.7982  Accept Ho - -
AGMPS vs. HMNEI  137.0 163.0 0.7210  Accept Hop - -
AGMPS vs. IB3 2495 745 0.0185 Reject Hy  0.0092 Reject Hy
AGMPS vs. ICF 306.0 19.0 0.0001 Reject Hp  0.0001  Reject Ho
AGMPS vs. CCIS 283.0 42.0 0.0006 Reject Hp 0.0003 Reject Ho

Wilcoxon Rank Sum test which indicate that the accuracy rate of AGMPS is significantly greater than
those of ICF and CCIS methods.

First, we run Barlett’s test on the equality of variances. Second, we measure the kappa values in
order to compare the results of AGMPS with the other PS methods. The results in Table 9 show that the
classification kappa variance of AGMPS method is not significantly different from the other PS methods.

Moreover, the result of Wilcoxon Rank Sum test for kappa measurement is shown in Table 11 at the
significance level of 0.05. There are two hypotheses in these tests. The null hypothesis is Hy: “The kappa
of AGMPS is equal to the kappa of the paired algorithm”. The alternative hypothesis is H;: “The kappa
of AGMPS is not equal to the kappa of the paired algorithm”. Table 11 shows the results of the Wilcoxon
Rank Sum test for kappa measurement and indicates that the kappa differences between AGMPS and
the four PS methods (CNN, FCNN, ENN, and HMNEI) are not significant.

Otherwise, the difference between AGMPS and the three other methods (IB3, ICF, and CCIS) is
significant a 0.05. We also performed one-sided Wilcoxon Rank Sum test for kappa value greatness.
This test has two hypotheses: Hgy: “The kappa value of AGMPS is equal to the kappa value of the
paired algorithm” and H;: “The kappa value of AGMPS is greater than the kappa value of the paired
algorithm”. In Table 11 shows that the kappa values of AGMPS are significantly greater than those of
the IB3, ICF, and CCIS methods.

5.5. Noise tolerance test

We use five data sets following three different schemes to compare the classification accuracy and
Cohen’s kappa of the AGMPS method with those of two edition (ENN and All-KNN) methods. First,
the Noisy Train-Noisy Test scheme is the most common noise scenario because of the low-quality of
the data source and the effect of the environment during the data collection process. Therefore, noise
occurs in both the training data and test data simultaneously. Second, the Noisy Train-Clean Test scheme
commonly can be sourced from errors in the data collection and data preparation processes. This scheme
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Fig. 7. Graphic comparison of average accuracy and kappa on six datasets with attribute noise.

often appears when the new data are handled for the first time. Lastly, the Clean Train-Noisy Test scheme
shows that the 1NN classifier model is created from the clean training data before noise occurs in the
test data. The two above schemes have higher possibility of occurrence than the Clean Train-Noisy Test

scheme

In Fig. 7, the line plots represent the trend of the accuracies and kappa values of all PS methods as
well as the 1NN baseline model in the three different noise schemes. The accuracy values of the AGMPS
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Table 12
Results of Barlett’s test for accuracy and kappa variance equality in attribute noise test.
Paired methods Accuracy Kappa
p-value Result p-value Result
AGMPS vs. ENN 0.4408 Accept Hy 0.7648 Accept Hy
AGMPS vs. All-kNN 0.4184 Accept Hy 0.7519 Accept Hy
Table 13
Results of the Wilcoxon Rank Sum test for accuracy comparison in attribute noise test
Paired methods R™ R~ Equality Difference
p-value Result p-value Result
AGMPS vs. ENN 13 65 0.0413 Reject Hy  0.02068 Reject Hy

AGMPS vs. AlI-kNN 17 61 0.0836  Accept Hy — -

Table 14
Results of the Wilcoxon Rank Sum test for kappa comparison in attribute noise test
Paired methods Rt R Equality Difference
p-value Result p-value Result
AGMPS vs. ENN 71 7 0.0121  Reject Hy  0.0060  Reject Hy

AGMPS vs. AlI-kNN 74 4 0.0059  Reject Hp  0.0029  Reject Hy

method and the other compared methods are similar in two noise schemes (Noisy Train-Noisy Test and
Noisy Train-Clean Test). The AGMPS method has a better kappa value than the ENN and All-KNN
methods, where the higher line indicates that AGMPS has a higher degree of agreement between the
predicted label and the actual label than the ENN and All-KNN methods in multi-class classifications.

We run Barlett’s test for the null hypothesis that all input samples are from populations with equal vari-
ances. Table 12 shows that the classification accuracy and kappa variance of AGMPS is not significantly
different from the ENN and AIl-KNN methods. The results in Table 13 indicate that the classification
accuracy differences between AGMPS and the AIl-KNN method are not significant. However, the re-
sults of the one-sided Wilcoxon Rank Sum test indicate that the accuracy rate of AGMPS method is
significantly less than that of the ENN method. Moreover, Table 14 shows the kappa difference between
AGMPS and the two other methods (ENN and All-KNN) is significant at the 0.05 level. In addition, the
kappa values of AGMPS are significantly greater than those of the ENN and All-KNN methods.

6. Conclusion

This paper proposes an extended prototype selection approach based on the Geometric Median (GM).
This approach focuses on speeding up the overall processing time while still providing a comparable
reduction rate and classification accuracy. The process of building the classifier model is the most time-
consuming part when large amounts of training data are processed. To speed up this process, we partition
the data into independent subsets and process the data in each partition separately. The AGMPS method
is designed to select a class representative in each disjoint partition. There are two main processes to
the AGMPS method. First, the Appropriate Partition Size Assignment (APSA) process calculates the
optimal number of partitions by finding a root of the derivative based on the average distance of the GM.
Second, the geometric median prototype selection (GMPS) process selects a subset of class representa-
tives from the dataset. Both processes calculate and select a prototype from a subset of samples in each
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partition. Therefore, this does not require the entire dataset to be loaded into memory. Furthermore, the
time complexity of each process is linear. This speed of data partitioning process means that the method
scales well when applied to processing large quantities of data.

The results of this experiment show that speed is the main strength of our method. The running time
of our AGMPS method is much shorter than that of all other PS methods studied because the AGMPS
method does not require complex computations such as finding nearest neighbors in the whole dataset or
finding samples close to decision boundaries. The AGMPS method provides classification accuracy and
kappa values that are comparable to those of four state-of-the-art PS methods (CNN, FCNN, ENN, and
HMNEI). When compared with IB3, AGMPS is significantly more accurate based on Cohen’s kappa. In
addition, the classification accuracy and kappa of AGMPS are significantly better than those of the ICF
and CCIS methods which have the top two highest reduction rates in this experiment.

Finally, the results of our tests on a variety of datasets confirm the initial premise of the effectiveness
of the proposed method for improving the running time of kNN algorithms with comparable reduction
rate and classification accuracy.

In future work, the AGMPS method will be applied in a parallel and distributed processing system.
This work should improve the processing speed of the AGMPS method. Furthermore, we aim to continue
to reduce the issues associated with processing handling real-world big datasets with AGMPS. This
research will show the scalability of AGMPS on the Big Data problem.
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